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Supervised Learning

Training Dataset (xm, ym) ∈ Rd+1

Objective Function f : Rd→ R, ym ≈ f (xm).

Formulation Through an optimization problem

min
f∈F

M∑
m=1

E (ym, f (xm)) + λR(f ), (1)

• E(ỹ, y): The error function,

• R(f ): The regularization,

• F : The search space

Example Ridge Regression

min
a∈RN

M∑
m=1

(ym,a
Txm)2 + λ‖a‖2. (2)

Deep Learning Model

Composition of parametric vector-valued functions

• fdeep : RN0 → RNL : x 7→ fL ◦ · · · ◦ f1(x)

• f` : RN`−1 → RN` : the `th layer

• The nth neuron of f`: x 7→ σn,`(w
T
n,`x) ,

• wn,` ∈ RN`−1 are linear weights and,

• σn,` : R→ R are point-wise nonlinearities.

Activation Functions

Standard Paradigm
Fix the shape of neurons
• σn,`(x) = σ(x− bn,`)
• Learn the bias terms bn,`
• Example: Rectified Linear Unit (ReLU) [4]

Learning Parametric Activations
• Adaptive Leaky ReLU [3]

• Adaptive piece-wise linear [1]

Our Proposal Variational Formulation (1) [6]

• The search space: F = BV(2)(R)

• The regularization: R(σ) = ‖σ‖BV(2)

Regarding the search space BV(2)(R):
• BV(2)(R) = {σ : R→ R : ‖σ‖BV(2) <∞},
• ‖σ‖BV(2) = ‖D2σ‖M + |σ(0)| + |σ(1)− σ(0)|,

Lipschitz Regularity

Definition 1 A function f : X → Y (X and Y are normed spaces with their
corresponding norms denoted by ‖ · ‖X , ‖ · ‖Y, respectively) is Lipschitz if,
for all x1, x2 ∈ X , there exists a constant C such that

‖f (x1)− f (x2)‖Y ≤ C‖x1 − x2‖X . (3)

Proposition 1 Any function σ ∈ BV(2)(R) is Lipschitz-continuous with con-
stant C = ‖σ‖BV(2).

Why Lipschitz?

• Any Lipschitz function is continuous and almost everywhere differentiable.
⇒ essential for back-propagation

• Generalization property of deep neural networks [5]
• Convergence analysis in deep learning schemes [2]

Global Lipschitz Bound

Theorem 1 (Lipschitz regularity of deep neural networks) Any
feed-forward fully-connected deep neural network with the nonlinearity
selected from the space BV(2)(R) and normalized linear weights (with respect
to the `∞-norm) specifies an input-output relation that is Lipschitz with
respect to the `1-norm with constant

C =

L∏
`=1

 N∑̀
n=1

‖σn,`‖BV(2)

 . (4)

• Optimizing
∑N`

n=1 ‖σn,`‖BV(2) contributes to a decrease of the overall Lipschitz
constant of the network.
⇒ Motivation for including these terms in the regularization functional

Problem Formulation

We formulate our training problem as

min
‖wn,`‖∞=1

σn,`∈BV(2)(R)

M∑
m=1

E
(
ym, f(xm)

)
+ µ

L∑
`=1

N∑̀
n=1

R`(wn,`) + λ
L∑
`=1,

 N∑̀
n=1

‖σn,`‖BV(2)

 , (5)

where • E(ỹ,y): The error function with E(y,y) = 0,

• R` : RN`−1 → R≥0: Regularization term for linear weights,

• λ, µ ∈ R>0: Adjustable parameters.

Representer Theorem

Theorem 2 ( BV(2) optimality of deep splines) If the solution of (5) exists,
then it is achieved by a deep spline network with individual activations of the form

σn,`(x) = b1,n,` + b2,n,`x +

Kn,`∑
k=1

ak,n,`ReLU(x− τk,n,`), (6)

with adaptive parameters Kn,` ≤ M , τ1,n,`, . . . , τKn,`,n,` ∈ R, and b1,n,`, b2,n,`, a1,n,`,
. . . , aKn,`,n,` ∈ R.

• The classical ReLU networks are special cases of our solution form.

• The BV(2)-norm of the activations

‖σn,`‖BV(2) =
∑Kn,`

k=1 |ak,n,`| + |b1| + |b2|
=⇒ `1 minimization techniques.

References

[1] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning ac-
tivation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830,
2014.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv
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