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Supervised Learning Lipschitz Regularity Problem Formulation

We formulate our training problem as

Training Dataset (x,,, y,,) € R
Objective Function f : R = R, y,, = f(x,).

Formulation Through an optimization problem

M
%1;1; B (Ym, f(@m)) + AR(S), (1) here o E(y,y): The error function with E(y,y) = 0,

N . o Ry RY~1 — Ry Regularization term for linear weights,
e F(y,y): The error function, -

e R(f): The regularization,
e f: The search space

o \. 1 € R,y Adjustable parameters.

Example Ridge Regression
M Representer Theorem

: T 2 2
gﬁg}i:l(ym,a zn)’ + Al 7
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C = SUup E < OO Theorem 2 ( BV optimality of deep splines) If the solution of (5) exists,

then it is achieved by a deep spline network with indiwvidual activations of the form

Deep Learnine Model Definition 1 A function f : X — Y (X and Y are normed spaces with their Ko
P 8 corresponding norms denoted by || - ||x, || - ||y, respectively) is Lipschitz if, Ono() = b1 g+ bop ez + Zak,n,EReLU(x — Thnt), (6)

for all x1, 9 € X, there exists a constant C' such that k=1
Composition of parametric vector-valued functions 1 F(z1) — fx)lly < Cllz — o2 ] (3) with adaptive parameters Ky, < M, 71,0, ... ,Tk,,me € R, and byp 0,005, @150,

ey QK 0l c R.
o fioep : R - RM -+ fr o+ o fy(x)

e The classical ReLU networks are special cases of our solution form.
e The BV -norm of the activations

Ky
Han,EHB\/@) — Zk:f |@k,n,€| + |b1| + [02]
— {1 minimization techniques.

NN .
o f; : RVt — RV - the (th layer v’v aalio = \02" ., Proposition 1 Any function o € BV? (R) 4s Lipschitz-continuous with con-
; stant C' = ||o||pye.

e The nth neuron of f: © — o, (W' @),

e w,, € RV are linear weights and, \) v"é«\}\\ Why Lipschitz?

® ot R — R are point-wise nonlinearities. e Any Lipschitz function is continuous and almost everywhere differentiable.

= essential for back-propagation
e Generalization property of deep neural networks |5
e Convergence analysis in deep learning schemes |2]
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e Optimizing foﬁl |on.ellgye contributes to a decrease of the overall Lipschitz
constant of the network.
= Motivation for including these terms in the regularization functional




