## GrapHiC: Graph-Based Hierarchical Clustering for SMLM

Single-Molecule Localization Microscopy (SMLM)

- Popular technique in super-resolution microscopy ( $10-20 \mathrm{~nm}$ )
- SMLM data:

A list of localized points $\mathbf{p}_{m}=\left(x_{m}, y_{m}\right), m=1, \ldots, M$ (optional) uncertainty $\sigma_{m}$ and photon count $N_{m}$

- Common limitations of the existing clustering methods for SMLM:

Shape prior: e.g. objects of the same size.
Noise prior: e.g. uniform noise

- Hierarchical clustering: Obtaining information at different scales.

Method Summary
. Graph construction

- Vertices: $v_{m}=\left(\mathcal{N}\left(\mathbf{p}_{m}, \boldsymbol{\Sigma}_{m}\right), N_{m}\right)$
- Connectivity pattern: Delaunay triangulation
- Weights: $w\left(v_{m}, v_{n}\right)=\exp \left(-\frac{d\left(v_{m}, v_{n}\right)}{2 \sigma_{s}^{2}}\right)$
$d(\cdot, \cdot)$ : metric between probability distributions $\sigma_{s}$ : costumized parameter

2. Preprocessing: detection of the isolated nodes

- Density associated to node $v_{m}: \rho_{m}=\frac{\sum_{n} w_{m, n}}{\left\{\left\{n: w_{m, n} \neq 0\right\rangle\right\}}$
- Removing isolated nodes by applying a threshold on $\rho_{\text {r }}$


## 3. Spectral clustering

Estimating the number of clusters
$\Rightarrow$ Finding the eigengap of the Laplacian matrix

- Applying K -means on the first $K$ eigenvectors.

4. Assign to each cluster $C$, a pair $\left(\mathcal{N}\left(\mathbf{p}_{C}, \boldsymbol{\Sigma}_{C}\right), N_{C}\right)$ and go to step 1.

## Quantitative Comparison




Second-level graph

nput point-cloud


Detecting isolated particles


Real Data





Detecting large clusters


Hierarchical outpu

