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Supervised Learning

m Training Data: (x,,,9,,) € R x R

for m=1,...,M

m Goal: Find f : R* — R such that f(x,,) =~ y,, for all m

malignant

Without'Overfitting!

15

10

=10 |

=15

-6

2 =2 0 2 2
Source: en.wikipedia.org/wiki/Overfitting
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Variational Formulation of Learning

M
min E(f(xm,), + AR
amin, 32 E(f@n).am) + AR(S
\ -~ 4 —
Data Fidelity Regularization

m 7 (R?): Search space
e Parametric regression: e.g. Neural networks with a prescribed architecture

e Nonparametric regression: e.g. Reproducing kernel Hilbert space (RKHS)

m LR xR — [R5 Convex loss function

e e.g. Quadratic loss E(y, z) = (y — 2)?

m R: F(R% — Rsq: Regularization functional
e Weight decay in deep learning
e The squared RKHS norm



Example

‘>< Data points‘ X Data points X Data points
4+ ] 4+ =TV ] 4t == Neural Network| -
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Banach Spaces

m (X, | ||x): Complete normed vector space

e Strong topology: =z — x if || — z||x — 0

m Finite-dimensional examples

Stefan Banach (1892 — 1945)

(X0ilanl?)”, pe [1,+00)

maxy, ||, p = +00

=

o (RY,[-p). where ||al|, =

° (RMXNa H ' HSP), where HAHSp = HO’(A)Hp (Schatten-p Norm)

m Infinite-dimensional examples

el

(fou |f(@)|Pd) ™, p e [1,+00)

o (Lp(RY),|-lz,), where |||z, =
G55 SUPgcRrd f(m)‘a p = +00

e (Co(RY), |l |lz..): Continuous functions that vanish at infinity



Dual of a Banach Space

m (X' || -||x): Space of continuous linear functionals X — R
o oz (x) = (2, 0) vixr = (2, 1)
o |2||x = Sup||x||,{:1<5’3/793>
m Examples p € |1, +00| and ¢ = ]%
o ®Y,[-1Ip) = (RY. - lla)
o RMXN|s,) = RN |- ls,)

¢ (LP(Rd)v H ' HLp)/ — (Lq(Rd)v H ' HLq) for p 7& 100

N (CQ(Rd), H : HLOO)/ — (,/\/l (]Rd), H : HM) (Duval-Peyré '15) (Chizat-Bach '20)

e Theorem[Riesz-Markov]: M(R?) is the space of finite signed measures
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Weak*-Topology and Existence

m (z/) C &X' converges in weak*-topology to 2’ € A", if

n

() ,2) — (', 2), VrelX
m Theorem[Banach-Alaoglu]: By = {||2'||x» < 1} is weak*-compact.

m Consequence: Generalized Welerstrass theorem
o 7 : X — R>(: weak*-lower semicontinuous
= argmin ., <cJ(z") is nonempty
o 7 :X — R>(: weak*-lower semicontinuous and coercive

= arg min,, v+ J (') is nonempty



Duality Mapping and Extreme Points
m Recall: HZIlexl — SuprHX:1<:E', £U>
m Generic duality bound: (', x) < ||2/|| x|z

m Duality mapping: Jv : X — 2% (Beurling-Livingston '62)

o o' € Jx(z)it  [[a'|lx = |lzllx and (2", 2) = ||| ||| x

B Jy(x)#Dforallz e X

T

m Ext(B): Extreme point of the convex set B

o v CExt(B)if Pxi,x0€ B,ac(0,1):2=ax; + (1 —a)xs



General Representer Theorem

Theorem [Unser '21, Unser-A.’22]
e X'(R%): Banach space of functions RY — R
e r,, € R m=1,..., M: distinct data points
e Vm,0p X' (RY) = R: f+— f(x,,): weak*-continuous
o v:RXR — R>q: Strictly convex

Then, the solution set

M
V = argmin gc y/(ga) Z E(f(@m), ym) + Al fll 2/

m=1

IS nonempty, convex and weak*-compact. Moreover:

1. dv = Z%ﬂ Cm0gz, € X suchthatV C Jy(v)

2. Ext()): linear combination of at most M extreme points of By (Boyer et al. '19)
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Example: Hilbert Spaces

m #(R?): Complete inner-product space

e Banach space: || fllx = /{f, f)

e Riesz map: Linear isometry Ry : H(RY) — H’'(R%) with | David Hilbert
(1862 — 1943)

<RH(f)7g>’H’><H — <fag>7 Vf,g < H(Rd)

m H'(R%): RKHS < Weak*-continuity of pointwise evaluation

e Reproducing kernel: K(-,z) = Ry (d4) for all z € R¢ (Aronszajn '62)

m Duality mapping: Jx(f) = {Ru(f)}

= 7 =R (2%21 cmdwm) = Zn]\le cmK(-, T, Unique solution

(Scholkopf et al. '01) (Wahba '90)
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Banach Kernels

m Recall: M(R?) is the space of finite Radon measures

o Li(RY) € M(RY) with || f]lz, = || fl.u forany f € Ly (RY),

e Forany a = (a,,n) c ¥y (Z) Johann Radon (1887 — 1956)
Wa =Y andy, € M(RY),  |wallm = |als,
nez

m L: Linear shift-invariant (LSI) isomorphisms onto M (R¢)
m Search space M, (R%) = L~ (/\/l (Rd))
e Banach structure: || f||r, = [|L{Sf}H|

e Banach kernel: k = L™1{§} € My (R?)

12



Admissible Banach Kernels

Theorem [A.-Unser ’21]

1. The LSI operator L is an isomorphism onto M (RR¢) if and only if the
Fourier transform of its Banach kernel E(w) IS @ smooth, nonvanishing,
slowly growing, and heavy-tailed function of w.

2. Pointwise evaluation is weak*-continuous over My, (R?), if and only if
k € Cy (Rd)

Exponential Bessel-Potential
> T

—=1,7v=0.3
= a=1,v7=05
=g =1.99,7=0.3

a=199,~v=0.5
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Sparse Multikernel Regression

] Learning with mU|t|p|e kernels (Lanckriet et al. '04) (Bach et al. '05)

e ki,...,ky: prescribed positive-definite kernels

e Learn a positive-definite kernel k,, = Zgzl Lk, from the data

m Multicomponentmodel: f = fi +---+ fn,  Vn: f, € My, (R
m Search space: X'(R%) = [[_, My, (R%)

o [Ifllx = [|(Ifullame, )]y = Soney | fallre,

m Extreme points of 54/ [Unser-A. '22]

f = (f,) € Ext(By/) < Ingandz € R*: £ = (0,..., %k, (- — 2),...,0)
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Sparse Multikernel Regression

Theorem [A.-Unser ’21] There exists f* solution of

min ZE (®m), Ym) + M| (fr)ll 2,

fn EMLn (Rd)

f:z:rr]:rzl fn

with the expansion

2

My,

S anlk znl

o
[=1

L

n

where K = ijzl M, < M. Moreover, the unknown kernel coefficients
a = (a,,;) € R® are in the solution set of

M
a,nellg}{ (Z E([Ga]maym) + )‘”a’”El)
m=1

for some matrix G € RM>% that depends on the kernel locations Zin TIe
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Sparse Multikernel Regression

-1 « Training 2 —GT
—GT ---RKHS L,
-2 -2
0 0.5 1 0 0.5 1
3 3

=4 —GT -1 —GT
---RKHS L, —--Simple MKL
-2 -2
0 0.5 1 0 0.5 1
3 3

-1 + Training}{ -1 —GT
—GT ---RKHS L,
-2 -2
0 0.5 1 0 0.5 1
3 3

—GT
—--SimpleMKL

0.5 1

L2-RKHS

0 10 20

30 ?

1 T T

0 10 20

o mmmmnnmm__

40 0 60
Single gTV
L] L]

30 40 50 60
Multi gTV
L]

1 T T

-1 —GT 1 —GT = i —GT 0.5 Il]] .
—--Single gTV —--Multi gTV ---Single gTV —--Multi gTV
25 0.5 1 o 05 1 2 0.5 1 2 05 1 % 10 20 30 40 50 60 70 80 90 10
(a) Full data (b) Missing data
Quantity Dataset | L2-RKHS L1-RKHS SimpleMKL Single gTV  Multi gT'V
) Full data 64.7 44.1 54.4 32.5 20.0
Sparsity

Missing data

66.1

39.3

56.0

32.9

31.1

MSE (dB)

Full data
Missing data

-17.2
-2.6

-16.1
-2.7

-15.2
-10.9

-16.7
-3.9

-18.1
-17.3
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Deep Neural Networks (DNNs)
m Composition of “simple” vector-valued mappings

................ @.......-.-.-...
a%
T az
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= O
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1 XA s
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. x“%.,.& o
= WAN "
Q,
o
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Feed-Forward DNNs

m Input-output relation

m [th layer
e Linear layer

e Pointwise nonlinearity

(o] ZRNZ %RNZ

m Alternative representation

facep : RN 5 RNZ . s £ 0+ o £y ().

fi(@) = (o1u(wli@), oau(whi), . ona(wh, )
T
W, = {Wu Wo g - WNl,l]
(5131, R 733]\71) — (O_l,l<x1)7 0'2’5(332), IR O-Nl>l<le))
fl — O] © Wl
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Fixed Activation Functions: RelLU, LRelL U

m Fixed-shape Nonlinearities Oni(2) = 0(2 — bp 1)

m Common choices:

( (

r, x>0 r, x>0
ReLU(z) = « LReLU,(x) =
\O, x <0 azr, @ <0
1 ReLU _ __LRelU(a=0.1)
0.8F 0.8f
o6
0.6F
04F
04r
0.2F
0.2F ol
0 : : -0.2 . : ‘
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(Glorot et al. '11) (Maas et al. '13)
m RelLU DNNs: Hierarchical splines (Poggio et al. '15)
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CPWL Structure of DNNs

m Definition (Wang-Sun 2005)

A function f : RNo — R is continuous piecewise-linear (CPWL) if:

e it is continuous, and,

e its domain RV = Ule Py, can be partitioned into a finite set of

non-overlapping convex polytopes P over which it is affine.

22



CPWL Structure of DNNs

m In1D: CPWL <= Linear spline

m Linear combination of CPWL functions = CPWL

m Composition of two CPWL = CPWL

= Neural networks with linear spline activation functions are CPWL.

Theorem|[Arora, et al., 2018]: Any CPWL function f : R — R can be exactly
represented by a ReLU neural network with at most [log,(d + 1)| + 1 layers.

23



Parametric Activation Functions

m PRelLU: Learn the negative slope (He et al. '15)

g g

1 -1 T ¥ -2
0.8F 0.8F
0.6k 0.6F
0.4F 0.4F
0.2F 0.2f
or ok
-0.2 i = = -0.2 . . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

m Adaptive Piecewise Linear (APL) ity Sameziess
e o(x) = ReLU(z) + X axReLU(by, — )
e K <10 etores
e (5 regularization on ax’s and by’s
(Agostinelli et al. '15) :\ L e
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Free-Form Activation Functions

m Deep splines: a functional framework for learning activation functions

m Principled design:

e Preserves CPWL structure of DNNs

e Promotes sparse activation functions

e (Controls the global Lipschitz regularity of the network

e Efficient implementation that makes it scalable in time and memory

25



1D Regression with Lipschitz Regularization

|f (z1)—f(z2)]

[z1—22|

m Lipschitz constant: L(f) = sup,, 4.,

B LipR)={f:R—=>R: L(f) <+oo}

Theorem [A. et al. '21, simplified]
There exists a linear spline solution f* of

M
VLip — arg minfELip(R) (Z E(f(xm)a y’m) T AL(f))

m=1
with at most M knots. Moreover, we have that

[ (@m) — f*(zn) .

Lm — Lnp

L(f") = max

m=#n




Finding The Sparsest Linear Spline Solution

m Two-stage algorithm: assumethatr; < ... <z

e Using proximal methods (e.g. ADMM), solve the minimization

Zm — Am—1

M
arg min, -pum Z E(Ym, 2m) + A ,nax

_ Lm — Lm—1
m=1

e Find the sparsest linear spline interpolant of (1, 27 ), ..., (zar, 25)-

(Debarre et al. '20)
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Not That Sparse!

X Data points
4! == [ipschitz




1D Regression with Sparsity

m Simple observation:

f(z) =ax+b+ ZakReLU(- — ) = D*{f} = Zak(S(- — X))

k=1
K

= TVE(f) = ID*{f}HIlsm =)

k=1

m Connection to Lipschitz regularity

L(f) < Ifllgye = TVP(F) +1£0)] + | (1)

k=1

] Sparsity promoting!

Theorem [Unser et al. 17, simplified]

VTV(Q) — arg minfeBV(Q)(R) <

with at most M knots.

(Debarre et al. '20)

There exists a linear spline solution f* of

Y " E(f(@m), ym) + ATV ()

m=1

)
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Sparse + Lipschitz

m Explicit control of Lipschitz constant (Arjovsky et al. '17) (Bohra et al. '21)

Vhyh = arg MIN By (2) (R) (Zn]\le E(f(Tm), ym) + )‘TV(Q)(f)) , st L(f) <L

m [: user-defined guarantee of stability

Theorem [A. et al. "21]

The solution set V4,1, is @ nonempty, convex and weak*-compact subset of
BV(Z)(R) whose extreme points are linear splines with at most M knots.
Moreover, there exists a unique vector z* = (z,,) such that

Viyb = argmin pcgye @ TVP(f), st f(@m) =2m, 1 <m < M
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Back to DNNs

] ReCa” fdeep:ULOWLO"’O(Tl()WlZRNO%RNL

B o= (0,) € BV(Q)(R)N = |lo|lgve = 22;1 |lon|lgve

Theorem [A. et al. '20]

Any feed-forward fully-connected deep neural network with second-order bounded
activation functions is Lipschitz continuous. Moreover, the Lipschitz constant of
facep : (RY, || - []2) = (RY%, || - ||2) is upper-bounded by

L
L(facep) < (H HWZHF> - (H HUz\va)
=1
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Deep Splines

Theorem [A. et al. "20] (Unser '19)
There exists an optimal configuration that minimizes the cost functional

M L
T (faeep) = Z E(ym7 fdeep(wm)) + ZMHWZH%

m=1 [=1
L
+> Allodlgye
[=1

whose activation functions are linear splines with at most M knots.
Moreover, any local minima of the above problem satisfies

Mloillsye = 21 Wisa %, 1=1,...,L—1.

m Open-source software: github.com/joaquimcampos/DeepSplines
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Examples

Activations

RelLU

LeakyRelLU

PRelLU

Deep Spline

Layer Descriptor

(2,2,1)

-0.5

1.0
0.8
0.6
0.4
0.2

-9 %5 -05 0.0

05 1.000

1.0
0.8
0.6
0.4
0.2

-L05-05 00

05 1.000

-L05-05 00

05 1.000

(2,4,1)

0-05 00 05 1.000

1.0
0.8
0.6
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0.2
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(2,10,1)
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1.0

0.8
0.6
0.4

0.2

-1.0

0-05 00 05 1.000

101NS

Functi

1vation

Act

APLU PReLLU RelLLU

Deep

Layer Descriptor

(2,4, 1)

1.0 1.0
0.8

05
0.6

0.0
0.4

-05
0.2
190  -05 0.0 05 10 00
1.0 1.0
: 0.8

05
0.6

0.0
0.4

-05
0.2
%6 -05 00 05 10 0

1.0

0.5

0.0

-0.5

10 1.0

0.8
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0.6
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0.4
-05

0.2
186 -05 00 05 10 00

(2, 120, 1)

1.0
0.5
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-05
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1.0
0.8

0.5
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0.4

=05
0.2

96 -os

1.0
0.5
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-0.5
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10
05
0.0
-05

8 -o0s

0.0 0.5 10 90

0.0 05 10 00

0.0 0.5

0.0 05 10 00

(2,6, 6, 1)

-0.5 0.0 0.5 10 00

10
0.8
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0.4
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Examples

TABLE 2 NIN Error Rates on CIFAR-10 and CIFAR-100 TABLE 4 B-Splines vs. Gridded ReLUs vs. APLUs
Activation | CIFAR-10  CIFAR-100 Architecture, Memory Time
function Nb. coeflicients (megabytes) per
ReLU 8.78% 32.44% epoch
(seconds)
APLU 8.71% 31.74% B-splines, K =9 1132 44.92
B-spline 8.29% 30.43% B-splines, K = 29 1133 41.89
TABLE 3 ResNet Error Rates on CIFAR-10 and CIFAR-100 B-splines, K = 499 1299 41.19
. Gridded RelLLUs, K =9 3313 49.86
Activation | CIFAR-10  CIFAR-100
function Gridded RelLUs, K = 29 9616 81.21
ReLLU 6.31% 29.02% APLUs, K =9 3316 49.72
APLU 6.45% 728 85% APLUs, K =29 9618 87.34
B-spline 6.02% 28.24% For the gridded ReLU and APLU networks, the maximum number of knots

allowed by the GPU memory is 31.

Source: P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser, "Learning Activation Functions in
Deep (Spline) Neural Networks," IEEE Open Journal of Signal Processing, 2020.
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CPWL Functions Revisited

m Hessian of CPWL functions has Hausdorff dimension = (d — 1)
m [ntuition: Schatten-1 norm regularization promotes low-rank matrices
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Hessian-Schatten Total Variation

m Informal definition HTV,(f) = [ |[[H{f}Hz)|s,dx

m Hessian of CPWL functions is not defined pointwise!

Definition [A. et al. ’21]
Let p € [1,+00] and ¢ = p/(p — 1). The Hessian-Schatten total-variation (HTV) of
any f : RY - R

HTVp(f) — Sup {<H{f}, F>  F = [f@j], fi,j S C()(Rd), HF(ZE)qu < 1IVx € Rd} :
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Hessian-Schatten Total-Variation

Theorem [A. et al. ’21]

1. If f: RY — R is twice differentiable, then

HTV,(f) = y IH{f}(x)]s,dz.

2. Let f be a CPWL function with linear regions P, ..., Py so that
Vi, =an,eRiforn=1,...,N. Then

HTV,(f) = Z la, — amHZHd_l(Pn N E ),

m<n

where H?~! denotes the (d — 1)-dimensional Hausdorff measure.

m Proof of 1: Duality mapping of Schatten norms  (A.-Unser '21)
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Example: HTV As a Complexity Measure

‘>< Data f)oints‘

0.6 0.8 1

X Data points

==Smoothing splines|

X Data points
—TV®

HTV=0.06

0.2 0.4 0.6 0.8 1

X Data points
==RKHS(0c = 0.25) -

HTV=0.28

0.2 0.4 0.6 0.8 1

X Data points
== Neural Network| |

PSS,

HTV=0.07

0.2 0.4 0.6 0.8 1

X Data points
== Lipschitz

HTV=0.5]

0.2 0.4 0.6 0.8 1
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Example: HTV As a Complexity Measure

RelLU neural network
(2,40,40,40,40,1)

Weight decay= 5e-5
MSE= 2.36e-5

HTV= 8.1

Target function
HTV = 6.98
+

Noisy training data

Gaussian RBF Gaussian RBF

Sigma= 0.41 Sigma= 0.71
Lambda= 5e-6 Lambda= 1e-2
MSE-= 6.58e-5 MSE= 1.69 e-4
HTV10= 1044 HTV10= 8.2
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Example: HTV As a Complexity Measure

Target function HTV Min ReLU neural network Gaussian RBF

N (2,40,40,40,40,1) Sigma= 0.16

M=35000 training data Train SNR = 39.4 dB Train SNR = 39.6 dB Train SNR = 39.4 dB
Test SNR = 34.84 dB Test SNR = 33.0 dB Test SNR = 13.6 dB
HTV = 8.9 HTV= 10.8 HTV;=24.3

Source: J. Campos, S. Aziznejad, M. Unser, "Learning of Continuous and Piecewise-Linear
Functions with Hessian Total-Variation Regularization," submitted, 2021.
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Conclusion

m A general framework for learning over Banach spaces

e Application: Sparse multikernel regression

m Learning sparse and Lipschitz-regular 1D mappings

e Application: Deep splines

m Learning CPWL functions in higher dimensions

e Defining a Hessian-based regularization functional
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