EPFL

Supervised Learning Over Banach Spaces

Shayan Aziznejad
Biomedical Imaging Group
EPFL, Lausanne, Switzerland

Supervised Learning

■ Training Data: $\quad\left(\boldsymbol{x}_{m}, y_{m}\right) \subseteq \mathbb{R}^{d} \times \mathbb{R} \quad$ for $\quad m=1, \ldots, M$

■ Goal: Find $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $f\left(\boldsymbol{x}_{m}\right) \approx y_{m}$ for all m

Variational Formulation of Learning

$$
\min _{f \in \mathcal{F}\left(\mathbb{R}^{d}\right)} \underbrace{\sum_{m=1}^{M} E\left(f\left(\boldsymbol{x}_{m}\right), y_{m}\right)}_{\text {Data Fidelity }}+\underbrace{\lambda \mathcal{R}(f)}_{\text {Regularization }}
$$

■ $\mathcal{F}\left(\mathbb{R}^{d}\right)$: Search space

- Parametric regression: e.g. Neural networks with a prescribed architecture
- Nonparametric regression: e.g. Reproducing kernel Hilbert space (RKHS)

■ $E: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$: Convex loss function

- e.g. Quadratic loss $E(y, z)=(y-z)^{2}$

■ $\mathcal{R}: \mathcal{F}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{\geq 0}$: Regularization functional

- Weight decay in deep learning
- The squared RKHS norm

Example

OUTLINE

- Introduction
- Learning over Banach spaces
- Theory of Banach spaces
- General representer theorem
- Application: Sparse multikernel regression
- Learning activation functions of DNNs
- One-dimensional learning
- Deep splines
- Going to higher dimensions
- Hessian-based regularization
- Future works

Banach Spaces

- $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$: Complete normed vector space
- Strong topology: $x_{k} \rightarrow x$ if $\left\|x_{k}-x\right\|_{\mathcal{X}} \rightarrow 0$

■ Finite-dimensional examples

Stefan Banach (1892-1945)

- $\left(\mathbb{R}^{N},\|\cdot\|_{p}\right)$, where $\|\mathbf{a}\|_{p}= \begin{cases}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}, & p \in[1,+\infty) \\ \max _{n}\left|a_{n}\right|, & p=+\infty\end{cases}$
- $\left(\mathbb{R}^{M \times N},\|\cdot\|_{S_{p}}\right)$, where $\|\mathbf{A}\|_{S_{p}}=\|\boldsymbol{\sigma}(\mathbf{A})\|_{p}$
- Infinite-dimensional examples
- $\left(L_{p}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L_{p}}\right)$, where $\|f\|_{L_{p}}= \begin{cases}\left(\int_{\mathbb{R}^{d}}|f(\boldsymbol{x})|^{p} \mathrm{~d} \boldsymbol{x}\right)^{\frac{1}{p}}, & p \in[1,+\infty) \\ \operatorname{ess} \sup _{\boldsymbol{x} \in \mathbb{R}^{d}}|f(\boldsymbol{x})|, & p=+\infty\end{cases}$
- $\left(\mathcal{C}_{0}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L_{\infty}}\right)$: Continuous functions that vanish at infinity

Dual of a Banach Space

- $\left(\mathcal{X}^{\prime},\|\cdot\|_{\mathcal{X}^{\prime}}\right)$: Space of continuous linear functionals $\mathcal{X} \rightarrow \mathbb{R}$
- $x^{\prime}: x \mapsto x^{\prime}(x)=\left\langle x^{\prime}, x\right\rangle_{\mathcal{X}^{\prime} \times \mathcal{X}}=\left\langle x^{\prime}, x\right\rangle$
- $\left\|x^{\prime}\right\|_{\mathcal{X}^{\prime}}=\sup _{\|x\|_{\mathcal{X}}=1}\left\langle x^{\prime}, x\right\rangle$
- Examples $\quad p \in[1,+\infty]$ and $q=\frac{p}{p-1}$
- $\left(\mathbb{R}^{N},\|\cdot\|_{p}\right)^{\prime}=\left(\mathbb{R}^{N},\|\cdot\|_{q}\right)$
- $\left(\mathbb{R}^{M \times N},\|\cdot\|_{S_{p}}\right)^{\prime}=\left(\mathbb{R}^{M \times N},\|\cdot\|_{S_{q}}\right)$
- $\left(L_{p}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L_{p}}\right)^{\prime}=\left(L_{q}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L_{q}}\right)$ for $p \neq+\infty$

■ $\left(\mathcal{C}_{0}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L_{\infty}}\right)^{\prime}=\left(\mathcal{M}\left(\mathbb{R}^{d}\right),\|\cdot\|_{\mathcal{M}}\right)$

- Theorem[Riesz-Markov]: $\mathcal{M}\left(\mathbb{R}^{d}\right)$ is the space of finite signed measures

Weak*-Topology and Existence

■ $\left(x_{n}^{\prime}\right) \subseteq \mathcal{X}^{\prime}$ converges in weak*-topology to $x^{\prime} \in \mathcal{X}^{\prime}$, if

$$
\left\langle x_{n}^{\prime}, x\right\rangle \rightarrow\left\langle x^{\prime}, x\right\rangle, \quad \forall x \in \mathcal{X}
$$

■ Theorem[Banach-Alaoglu]: $B_{\mathcal{X}^{\prime}}=\left\{\left\|x^{\prime}\right\|_{\mathcal{X}^{\prime}} \leq 1\right\}$ is weak*-compact.

■ Consequence: Generalized Weierstrass theorem

- $\mathcal{J}: \mathcal{X}^{\prime} \rightarrow \mathbb{R}_{\geq 0}$: weak*-lower semicontinuous

$$
\Rightarrow \arg \min _{\left\|x^{\prime}\right\| \mathcal{X}^{\prime} \leq C} \mathcal{J}\left(x^{\prime}\right) \text { is nonempty }
$$

- $\mathcal{J}: \mathcal{X}^{\prime} \rightarrow \mathbb{R}_{\geq 0}$: weak**-lower semicontinuous and coercive

$$
\Rightarrow \arg \min _{x^{\prime} \in \mathcal{X}^{\prime}} \mathcal{J}\left(x^{\prime}\right) \text { is nonempty }
$$

Duality Mapping and Extreme Points

■ Recall: $\left\|x^{\prime}\right\|_{\mathcal{X}^{\prime}}=\sup _{\|x\|_{\mathcal{X}}=1}\left\langle x^{\prime}, x\right\rangle$
■ Generic duality bound: $\left\langle x^{\prime}, x\right\rangle \leq\left\|x^{\prime}\right\|_{\mathcal{X}^{\prime}}\|x\|_{\mathcal{X}}$
■ Duality mapping: $\mathcal{J X}_{\mathcal{X}}: \mathcal{X} \rightarrow 2^{\mathcal{X}^{\prime}}$

- $x^{\prime} \in \mathcal{J}_{\mathcal{X}}(x)$ if $\quad\left\|x^{\prime}\right\|_{\mathcal{X}^{\prime}}=\|x\|_{\mathcal{X}}$ and $\left\langle x^{\prime}, x\right\rangle=\left\|x^{\prime}\right\|_{\mathcal{X}^{\prime}}\|x\|_{\mathcal{X}}$

■ $\mathcal{J} \mathcal{X}(x) \neq \emptyset$ for all $x \in \mathcal{X}$

■ $\operatorname{Ext}(B)$: Extreme point of the convex set B

- $x \in \operatorname{Ext}(B)$ if $\nexists x_{1}, x_{2} \in B, \alpha \in(0,1): x=\alpha x_{1}+(1-\alpha) x_{2}$

General Representer Theorem

Theorem [Unser '21, Unser-A.'22]

- $\mathcal{X}^{\prime}\left(\mathbb{R}^{d}\right)$: Banach space of functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$
- $\boldsymbol{x}_{m} \in \mathbb{R}^{d}, m=1, \ldots, M$: distinct data points
- $\forall m, \delta_{\boldsymbol{x}_{m}}: \mathcal{X}^{\prime}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}: f \mapsto f\left(\boldsymbol{x}_{m}\right)$: weak*-continuous
- $E: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$: Strictly convex

Then, the solution set

$$
\mathcal{V}=\arg \min _{f \in \mathcal{X}^{\prime}\left(\mathbb{R}^{d}\right)} \sum_{m=1}^{M} E\left(f\left(\boldsymbol{x}_{m}\right), y_{m}\right)+\lambda\|f\|_{\mathcal{X}^{\prime}}
$$

is nonempty, convex and weak*-compact. Moreover:

1. $\exists \nu=\sum_{m=1}^{M} c_{m} \delta_{\boldsymbol{x}_{m}} \in \mathcal{X}$ such that $\mathcal{V} \subseteq \mathcal{J X}_{\mathcal{X}}(\nu)$
2. $\operatorname{Ext}(\mathcal{V})$: linear combination of at most M extreme points of $B_{\mathcal{X}^{\prime}}$ (Boyer et al. '19)

Example: Hilbert Spaces

■ $\mathcal{H}\left(\mathbb{R}^{d}\right)$: Complete inner-product space

- Banach space: $\|f\|_{\mathcal{H}}=\sqrt{\langle f, f\rangle}$
- Riesz map: Linear isometry $\mathrm{R}_{\mathcal{H}}: \mathcal{H}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{H}^{\prime}\left(\mathbb{R}^{d}\right)$ with

David Hilbert (1862-1943)

$$
\left\langle\mathrm{R}_{\mathcal{H}}(f), g\right\rangle_{\mathcal{H}^{\prime} \times \mathcal{H}}=\langle f, g\rangle, \quad \forall f, g \in \mathcal{H}\left(\mathbb{R}^{d}\right)
$$

■ $\mathcal{H}^{\prime}\left(\mathbb{R}^{d}\right)$: RKHS \Leftrightarrow Weak *-continuity of pointwise evaluation

- Reproducing kernel: $\mathrm{K}(\cdot, \boldsymbol{x})=\mathrm{R}_{\mathcal{H}}\left(\delta_{\boldsymbol{x}}\right)$ for all $\boldsymbol{x} \in \mathbb{R}^{d}$
(Aronszajn '62)
- Duality mapping: $\mathcal{J}_{\mathcal{H}}(f)=\left\{\mathrm{R}_{\mathcal{H}}(f)\right\}$
$\Rightarrow f^{*}=\mathrm{R}_{\mathcal{H}}\left(\sum_{m=1}^{M} c_{m} \delta_{\boldsymbol{x}_{m}}\right)=\sum_{m=1}^{M} c_{m} \mathrm{~K}\left(\cdot, \boldsymbol{x}_{m}\right) \quad$ Unique solution

Banach Kernels

■ Recall: $\mathcal{M}\left(\mathbb{R}^{d}\right)$ is the space of finite Radon measures

- $L_{1}\left(\mathbb{R}^{d}\right) \subseteq \mathcal{M}\left(\mathbb{R}^{d}\right)$ with $\|f\|_{L_{1}}=\|f\|_{\mathcal{M}}$ for any $f \in L_{1}\left(\mathbb{R}^{d}\right)$.
- For any $\boldsymbol{a}=\left(a_{n}\right) \in \ell_{1}(\mathbb{Z})$:

$$
w_{\boldsymbol{a}}=\sum_{n \in \mathbb{Z}} a_{n} \delta_{\boldsymbol{x}_{n}} \in \mathcal{M}\left(\mathbb{R}^{d}\right), \quad\left\|w_{\boldsymbol{a}}\right\|_{\mathcal{M}}=\|\boldsymbol{a}\|_{\ell_{1}}
$$

■ L: Linear shift-invariant (LSI) isomorphisms onto $\mathcal{M}\left(\mathbb{R}^{d}\right)$

- Search space $\mathcal{M}_{\mathrm{L}}\left(\mathbb{R}^{d}\right)=\mathrm{L}^{-1}\left(\mathcal{M}\left(\mathbb{R}^{d}\right)\right)$
- Banach structure: $\|f\|_{\mathcal{M}_{\mathrm{L}}}=\|\mathrm{L}\{f\}\|_{\mathcal{M}}$
- Banach kernel: $\mathrm{k}=\mathrm{L}^{-1}\{\delta\} \in \mathcal{M}_{\mathrm{L}}\left(\mathbb{R}^{d}\right)$

Admissible Banach Kernels

Theorem [A.-Unser '21]

1. The LSI operator L is an isomorphism onto $\mathcal{M}\left(\mathbb{R}^{d}\right)$ if and only if the Fourier transform of its Banach kernel $\widehat{k}(\boldsymbol{\omega})$ is a smooth, nonvanishing, slowly growing, and heavy-tailed function of $\boldsymbol{\omega}$.
2. Pointwise evaluation is weak*-continuous over $\mathcal{M}_{\mathrm{L}}\left(\mathbb{R}^{d}\right)$, if and only if $\mathrm{k} \in \mathcal{C}_{0}\left(\mathbb{R}^{d}\right)$.

Sparse Multikernel Regression

■ Learning with multiple kernels

- $\mathrm{k}_{1}, \ldots, \mathrm{k}_{N}$: prescribed positive-definite kernels
- Learn a positive-definite kernel $\mathrm{k}_{\mu}=\sum_{n=1}^{N} \mu_{n} \mathrm{k}_{n}$ from the data
$■$ Multicomponent model: $f=f_{1}+\cdots+f_{N}, \quad \forall n: f_{n} \in \mathcal{M}_{\mathrm{L}_{n}}\left(\mathbb{R}^{d}\right)$
■ Search space: $\mathcal{X}^{\prime}\left(\mathbb{R}^{d}\right)=\prod_{n=1}^{N} \mathcal{M}_{\mathrm{L}_{n}}\left(\mathbb{R}^{d}\right)$
- $\|\mathbf{f}\|_{\mathcal{X}^{\prime}}=\left\|\left(\left\|f_{n}\right\|_{\mathcal{M}_{\mathrm{L}_{n}}}\right)\right\|_{1}=\sum_{n=1}^{N}\left\|f_{n}\right\|_{\mathcal{M}_{\mathrm{L}_{n}}}$.

■ Extreme points of $B_{\mathcal{X}^{\prime}}$ [Unser-A. '22]

$$
\mathbf{f}=\left(f_{n}\right) \in \operatorname{Ext}\left(B_{\mathcal{X}^{\prime}}\right) \Leftrightarrow \exists n_{0} \text { and } \boldsymbol{z} \in \mathbb{R}^{d}: \mathbf{f}=\left(0, \ldots, \pm \mathrm{k}_{n_{0}}(\cdot-\boldsymbol{z}), \ldots, 0\right)
$$

Sparse Multikernel Regression

Theorem [A.-Unser '21] There exists f^{*} solution of

$$
\min _{\substack{f_{n} \in \mathcal{M}_{\mathcal{L}_{n}}\left(\mathbb{R}^{d}\right), f=\sum_{n=1}^{N} f_{n}}} \sum_{m=1}^{M} \mathrm{E}\left(f\left(\boldsymbol{x}_{m}\right), y_{m}\right)+\lambda\left\|\left(f_{n}\right)\right\|_{\mathcal{X}^{\prime}}
$$

with the expansion

$$
f^{*}=\sum_{n=1}^{N} \sum_{l=1}^{M_{n}} a_{n, l} \mathrm{k}_{n}\left(\cdot, \boldsymbol{z}_{n, l}\right)
$$

where $K=\sum_{n=1}^{N} M_{n} \leq M$. Moreover, the unknown kernel coefficients $\boldsymbol{a}=\left(a_{n, l}\right) \in \mathbb{R}^{K}$ are in the solution set of

$$
\min _{\boldsymbol{a} \in \mathbb{R}^{K}}\left(\sum_{m=1}^{M} \mathrm{E}\left([\mathbf{G} \boldsymbol{a}]_{m}, y_{m}\right)+\lambda\|\boldsymbol{a}\|_{\ell_{1}}\right)
$$

for some matrix $\mathbf{G} \in \mathbb{R}^{M \times K}$ that depends on the kernel locations $\boldsymbol{z}_{n, l}$.

Sparse Multikernel Regression

(a) Full data

Quantity	Dataset	L2-RKHS	L1-RKHS	SimpleMKL	Single gTV	Multi gTV
Sparsity	Full data	64.7	44.1	54.4	32.5	$\mathbf{2 0 . 0}$
	Missing data	66.1	39.3	56.0	32.9	$\mathbf{3 1 . 1}$
MSE (dB)	Full data	-17.2	-16.1	-15.2	-16.7	$\mathbf{- 1 8 . 1}$
	Missing data	-2.6	-2.7	-10.9	-3.9	$\mathbf{- 1 7 . 3}$

Related Literature

- S.D. Fisher, J.W. Jerome, "Spline solutions to L1 extremal problems in one and several variables," Journal of Approximation Theory, 1975.
- E. Mammen, S. van de Geer. "Locally adaptive regression splines," The Annals of Statistics, 1997.
- M. Unser, J. Fageot, J.P. Ward, "Splines are universal solutions of linear inverse problems with generalized TV regularization," SIAM Review, 2017.
- A. Flinth, P. Weiss. "Exact solutions of infinite dimensional total-variation regularized problems," Information and Inference: A Journal of the IMA, 2019.
- V. Duval, G. Peyré, "Exact support recovery for sparse spikes deconvolution," Foundations of Computational Mathematics, 2015.
- E. Candès, C. Fernandez-Granda, "Towards a mathematical theory of super-resolution," Communications on pure and applied Mathematics, 2014.
- C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. De Gournay, P. Weiss. "On representer theorems and convex regularization." SIAM Journal on Optimization 29, no. 2 (2019): 1260-1281.

OUTLINE

- Introduction
- Learning over Banach spaces
- Theory of Banach spaces
- General representer theorem
- Application: Sparse multikernel regression
- Learning activation functions of DNNs
- One-dimensional learning
- Deep splines
- Going to higher dimensions
- Hessian-based regularization
- Future works

Deep Neural Networks (DNNs)

■ Composition of "simple" vector-valued mappings

Feed-Forward DNNs

■ Input-output relation

- lth layer
- Linear layer

$$
\mathbf{w}_{l}=\left[\begin{array}{llll}
\mathbf{w}_{1, l} & \mathbf{w}_{2, l} & \cdots & \mathbf{w}_{N_{l}, l}
\end{array}\right]^{T}
$$

- Pointwise nonlinearity

$$
\boldsymbol{\sigma}_{l}: \mathbb{R}^{N_{l}} \rightarrow \mathbb{R}^{N_{l}} \quad\left(x_{1}, \ldots, x_{N_{l}}\right) \mapsto\left(\sigma_{1, l}\left(x_{1}\right), \sigma_{2, l}\left(x_{2}\right), \ldots, \sigma_{N_{l}, l}\left(x_{N_{l}}\right)\right)
$$

■ Alternative representation

$$
\mathbf{f}_{l}=\sigma_{l} \circ \mathbf{W}_{l}
$$

Fixed Activation Functions: ReLU, LReLU

■ Fixed-shape Nonlinearities

$$
\sigma_{n, l}(x)=\sigma\left(x-b_{n, l}\right)
$$

■ Common choices:

$$
\operatorname{ReLU}(x)= \begin{cases}x, & x \geq 0 \\ 0, & x<0\end{cases}
$$

(Glorot et al. '11)

$$
\operatorname{LReLU}_{a}(x)= \begin{cases}x, & x \geq 0 \\ a x, & x<0\end{cases}
$$

CPWL Structure of DNNs

■ Definition (Wang-Sun 2005)
A function $f: \mathbb{R}^{N_{0}} \rightarrow \mathbb{R}$ is continuous piecewise-linear (CPWL) if:

- it is continuous, and,
- its domain $\mathbb{R}^{N_{0}}=\bigcup_{k=1}^{K} P_{k}$ can be partitioned into a finite set of non-overlapping convex polytopes P_{k} over which it is affine.

CPWL Structure of DNNs

■ In 1D: CPWL \Longleftrightarrow Linear spline

- Linear combination of CPWL functions \Rightarrow CPWL
- Composition of two CPWL \Rightarrow CPWL
\Rightarrow Neural networks with linear spline activation functions are CPWL.

Theorem[Arora, et al., 2018]: Any CPWL function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ can be exactly represented by a ReLU neural network with at most $\left\lceil\log _{2}(d+1)\right\rceil+1$ layers.

Parametric Activation Functions

- PReLU: Learn the negative slope

■ Adaptive Piecewise Linear (APL)

- $\sigma(x)=\operatorname{ReLU}(x)+\sum_{k=1}^{K} a_{k} \operatorname{ReLU}\left(b_{k}-x\right)$
- $K<10$
- ℓ_{2} regularization on a_{k} 's and b_{k} 's
(Agostinelli et al. '15)

Free-Form Activation Functions

■ Deep splines: a functional framework for learning activation functions

■ Principled design:

- Preserves CPWL structure of DNNs
- Promotes sparse activation functions
- Controls the global Lipschitz regularity of the network
- Efficient implementation that makes it scalable in time and memory

1D Regression with Lipschitz Regularization

■ Lipschitz constant: $L(f)=\sup _{x_{1} \neq x_{2}} \frac{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|}$
■ $\operatorname{Lip}(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R}: \quad L(f)<+\infty\}$

Theorem [A. et al. '21, simplified]
There exists a linear spline solution f^{*} of

$$
\mathcal{V}_{\text {Lip }}=\arg \min _{f \in \operatorname{Lip}(\mathbb{R})}\left(\sum_{m=1}^{M} E\left(f\left(x_{m}\right), y_{m}\right)+\lambda L(f)\right)
$$

with at most M knots. Moreover, we have that

$$
L\left(f^{*}\right)=\max _{m \neq n}\left|\frac{f^{*}\left(x_{m}\right)-f^{*}\left(x_{n}\right)}{x_{m}-x_{n}}\right| .
$$

Finding The Sparsest Linear Spline Solution

■ Two-stage algorithm: assume that $x_{1}<\ldots<x_{M}$

- Using proximal methods (e.g. ADMM), solve the minimization

$$
\arg \min _{\boldsymbol{z} \in \mathbb{R}^{M}} \sum_{m=1}^{M} E\left(y_{m}, z_{m}\right)+\lambda \max _{2 \leq m \leq M}\left|\frac{z_{m}-z_{m-1}}{x_{m}-x_{m-1}}\right|
$$

- Find the sparsest linear spline interpolant of $\left(x_{1}, z_{1}^{*}\right), \ldots,\left(x_{M}, z_{M}^{*}\right)$.

(Debarre et al. '20)

Not That Sparse!

1D Regression with Sparsity

- Simple observation:

$$
\begin{aligned}
& f(x)=a x+b+\sum_{k=1}^{K} a_{k} \operatorname{ReLU}\left(\cdot-x_{k}\right) \Rightarrow \mathrm{D}^{2}\{f\}=\sum_{k=1}^{K} a_{k} \delta\left(\cdot-x_{k}\right) \\
& \Rightarrow \mathrm{TV}^{(2)}(f)=\left\|\mathrm{D}^{2}\{f\}\right\|_{\mathcal{M}}=\sum_{k=1}^{K}\left|a_{k}\right| \quad \text { Sparsity promoting! }
\end{aligned}
$$

- Connection to Lipschitz regularity:

$$
L(f) \leq\|f\|_{\mathrm{BV}^{(2)}}=\mathrm{TV}^{(2)}(f)+|f(0)|+|f(1)|
$$

Theorem [Unser et al. '17, simplified]
(Debarre et al. '20)
There exists a linear spline solution f^{*} of

$$
\mathcal{V}_{\mathrm{TV}^{(2)}}=\arg \min _{f \in \mathrm{BV}^{(2)}(\mathbb{R})}\left(\sum_{m=1}^{M} E\left(f\left(x_{m}\right), y_{m}\right)+\lambda \mathrm{TV}^{(2)}(f)\right)
$$

with at most M knots.

Sparse + Lipschitz

■ Explicit control of Lipschitz constant

$$
\mathcal{V}_{\mathrm{hyb}}=\arg \min _{f \in \mathrm{BV}^{(2)}(\mathbb{R})}\left(\sum_{m=1}^{M} \mathrm{E}\left(f\left(x_{m}\right), y_{m}\right)+\lambda \mathrm{TV}^{(2)}(f)\right), \quad \text { s.t. } \quad L(f) \leq \bar{L}
$$

- \bar{L} : user-defined guarantee of stability

Theorem [A. et al. '21]
The solution set $\mathcal{V}_{\text {hyb }}$ is a nonempty, convex and weak*-compact subset of $\mathrm{BV}^{(2)}(\mathbb{R})$ whose extreme points are linear splines with at most M knots. Moreover, there exists a unique vector $\mathbf{z}^{*}=\left(z_{m}\right)$ such that

$$
\mathcal{V}_{\mathrm{hyb}}=\arg \min _{f \in \mathrm{BV}^{(2)}(\mathbb{R})} \mathrm{TV}^{(2)}(f), \quad \text { s.t. } \quad f\left(x_{m}\right)=z_{m}, 1 \leq m \leq M
$$

Example

Back to DNNs

■ Recall: $\quad \mathbf{f}_{\text {deep }}=\sigma_{L} \circ \mathbf{W}_{L} \circ \cdots \circ \sigma_{1} \circ \mathbf{W}_{1}: \mathbb{R}^{N_{0}} \rightarrow \mathbb{R}^{N_{L}}$

$$
\boldsymbol{\sigma}=\left(\sigma_{n}\right) \in \mathrm{BV}^{(2)}(\mathbb{R})^{N} \Rightarrow\|\boldsymbol{\sigma}\|_{\mathrm{BV}^{(2)}}=\sum_{n=1}^{N}\left\|\sigma_{n}\right\|_{\mathrm{BV}^{(2)}}
$$

Theorem [A. et al. '20]

Any feed-forward fully-connected deep neural network with second-order bounded activation functions is Lipschitz continuous. Moreover, the Lipschitz constant of $\mathbf{f}_{\text {deep }}:\left(\mathbb{R}^{N_{0}},\|\cdot\|_{2}\right) \rightarrow\left(\mathbb{R}^{N_{L}},\|\cdot\|_{2}\right)$ is upper-bounded by

$$
L\left(\mathbf{f}_{\mathrm{deep}}\right) \leq\left(\prod_{l=1}^{L}\left\|\mathbf{W}_{l}\right\|_{F}\right) \cdot\left(\prod_{l=1}^{L}\left\|\boldsymbol{\sigma}_{l}\right\|_{\mathrm{BV}^{(2)}}\right)
$$

Deep Splines

Theorem [A. et al. '20]

(Unser '19)

There exists an optimal configuration that minimizes the cost functional

$$
\begin{aligned}
\mathcal{J}\left(\mathbf{f}_{\text {deep }}\right)= & \sum_{m=1}^{M} E\left(\boldsymbol{y}_{m}, \mathbf{f}_{\mathrm{deep}}\left(\boldsymbol{x}_{m}\right)\right)+\sum_{l=1}^{L} \mu_{l}\left\|\mathbf{W}_{l}\right\|_{F}^{2} \\
& +\sum_{l=1}^{L} \lambda_{l}\left\|\boldsymbol{\sigma}_{l}\right\|_{\mathrm{BV}^{(2)}}
\end{aligned}
$$

whose activation functions are linear splines with at most M knots.
Moreover, any local minima of the above problem satisfies

$$
\lambda_{l}\left\|\boldsymbol{\sigma}_{l}\right\|_{\mathrm{BV}^{(2)}}=2 \mu_{l+1}\left\|\mathbf{W}_{l+1}\right\|_{F}^{2}, \quad l=1, \ldots, L-1
$$

■ Open-source software: github.com/joaquimcampos/DeepSplines

Examples

Layer Descriptor

(2,2,1)

Layer Descriptor

$$
(2,4,1)
$$

$$
(2,120,1)
$$

$$
(2,6,6,1)
$$

Examples

TABLE 2 NIN Error Rates on CIFAR-10 and CIFAR-100

Activation function	CIFAR-10	CIFAR-100
ReLU	8.78%	32.44%
APLU	8.71%	31.74%
B-spline	8.29%	30.43%

TABLE 3 ResNet Error Rates on CIFAR-10 and CIFAR-100

Activation function	CIFAR-10	CIFAR-100
ReLU	6.31%	29.02%
APLU	6.45%	28.85%
B-spline	6.02%	28.24%

TABLE 4 B-Splines vs. Gridded ReLUs vs. APLUs

Architecture, Nb. coefficients	Memory (megabytes)	Time per epoch (seconds)
B-splines, $K=9$	1132	44.92
B-splines, $K=29$	1133	41.89
B-splines, $K=499$	1299	41.19
Gridded ReLUs, $K=9$	3313	49.86
Gridded ReLUs, $K=29$	9616	81.21
APLUs, $K=9$	3316	49.72
APLUs, $K=29$	9618	87.34

For the gridded ReLU and APLU networks, the maximum number of knots allowed by the GPU memory is 31 .

Source: P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser, "Learning Activation Functions in Deep (Spline) Neural Networks," IEEE Open Journal of Signal Processing, 2020.

OUTLINE

- Introduction
- Learning over Banach spaces
- Theory of Banach spaces
- General representer theorem
- Application: Sparse multikernel regression
- Learning activation functions of DNNs
- One-dimensional learning
- Deep splines
- Going to higher dimensions
- Hessian-based regularization
- Future works

CPWL Functions Revisited

- Hessian of CPWL functions has Hausdorff dimension $=(d-1)$

■ Intuition: Schatten-1 norm regularization promotes low-rank matrices

Related Literature

- R. Parhi, R.D. Nowak, "Banach space representer theorems for neural networks and ridge splines," Journal of Machine Learning Research, 2021.
- R. Parhi, R.D. Nowak, "What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory," ArXiv, 2021.
- P. Savarese, I. Evron, D. Soudry, N. Srebro, "How do infinite width bounded norm networks look in function space?," Conference on Learning Theory, 2019.
- G. Ongie, R. Willett, D. Soudry, N. Srebro, "A function space view of bounded norm infinite width ReLU nets: The multivariate case," ArXiv, 2019.

Hessian-Schatten Total Variation

■ Informal definition

$$
\operatorname{HTV}_{p}(f)=\int_{\mathbb{R}^{d}}\|\mathrm{H}\{f\}(\boldsymbol{x})\|_{S_{p}} \mathrm{~d} \boldsymbol{x}
$$

■ Hessian of CPWL functions is not defined pointwise!

```
Definition [A. et al. '21]
Let p\in[1,+\infty] and q=p/(p-1). The Hessian-Schatten total-variation (HTV) of
```



```
HTV
```


Hessian-Schatten Total-Variation

Theorem [A. et al. '21]

1. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is twice differentiable, then

$$
\operatorname{HTV}_{p}(f)=\int_{\mathbb{R}^{d}}\|\mathrm{H}\{f\}(\boldsymbol{x})\|_{S_{p}} \mathrm{~d} \boldsymbol{x}
$$

2. Let f be a CPWL function with linear regions P_{1}, \ldots, P_{N} so that $\left.\nabla f\right|_{P_{n}}=\boldsymbol{a}_{n} \in \mathbb{R}^{d}$ for $n=1, \ldots, N$. Then

$$
\operatorname{HTV}_{p}(f)=\sum_{m<n}\left\|\boldsymbol{a}_{n}-\boldsymbol{a}_{m}\right\|_{2} \mathcal{H}^{d-1}\left(P_{n} \cap P_{m}\right),
$$

where \mathcal{H}^{d-1} denotes the $(d-1)$-dimensional Hausdorff measure.
■ Proof of 1: Duality mapping of Schatten norms
(A.-Unser '21)

Example: HTV As a Complexity Measure

Example: HTV As a Complexity Measure

ReLU neural network
(2,40,40,40,40,1)
Weight decay $=5 \mathrm{e}-5$
MSE $=2.36 \mathrm{e}-5$
HTV= 8.1

Gaussian RBF
Sigma $=0.41$
Lambda $=5 \mathrm{e}-6$ MSE=6.58e-5 $H^{\prime} V_{10}=10.44$

Gaussian RBF

Sigma $=0.71$
Lambda= 1e-2
MSE= 1.69 e-4
$\mathrm{HTV}_{10}=8.2$

Example: HTV As a Complexity Measure

Target function
$+$
$\mathrm{M}=5000$ training data

HTV Min
Train SNR $=39.4 \mathrm{~dB}$ Test SNR = 34.84 dB HTV $=8.9$

ReLU neural network
(2,40,40,40,40,1)
Train SNR $=39.6 \mathrm{~dB}$
Test SNR $=33.0 \mathrm{~dB}$ HTV= 10.8

Gaussian RBF
Sigma= 0.16
Train SNR $=39.4 \mathrm{~dB}$
Test SNR $=13.6 \mathrm{~dB}$ $\mathrm{HTV}_{1}=24.3$

Source: J. Campos, S. Aziznejad, M. Unser, "Learning of Continuous and Piecewise-Linear
Functions with Hessian Total-Variation Regularization," submitted, 2021.

Conclusion

- A general framework for learning over Banach spaces
- Application: Sparse multikernel regression

■ Learning sparse and Lipschitz-regular 1D mappings

- Application: Deep splines
- Learning CPWL functions in higher dimensions
- Defining a Hessian-based regularization functional

Selected references

- Optimization Over Banach Spaces
- M. Unser, "A Unifying Representer Theorem for Inverse Problems and Machine Learning," FoCM, 2021.
- M. Unser, S. Aziznejad, "Convex Optimization in Sums of Banach Spaces," ACHA, 2022.
- S. Aziznejad, M. Unser, "Multikernel Regression with Sparsity Constraint," SIMODS, 2021.
- Deep Splines
- M. Unser, " ${ }^{-}$A Representer Theorem for Deep Neural Networks", JMLR, 2019.
- S. Aziznejad, H. Gupta, J. Campos, M. Unser, "Deep Neural Networks with Trainable Activations and Controlled Lipschitz Constant," IEEE TSP, 2020.
- P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser, "Learning Activation Functions in Deep (Spline) Neural Networks," IEEE OJSP, 2020.
- S. Aziznejad, T. Debarre, M. Unser, "Robust and Sparse Regression Models for One-dimensional Data", submitted, 2021.
- T. Debarre, Q. Denoyelle, J. Fageot, M. Unser, "Sparsest Continuous and Piecewise Representation of Data", submitted, 2020.
- Hessian-Based Regularization
- S. Aziznejad, M. Unser, "Duality Mapping for Schatten Matrix Norms", Numerical Functional Analysis and Optimization, 2021.
- S. Aziznejad, M. Unser, "Measuring Complexity of Learning Schemes with Hessian-Schatten Total Variation", submitted, 2021.
- J. Campos, S. Aziznejad, M. Unser, "Learning Continuous and Piecewise Linear Functions with HessianSchatten Total-Variation Regularization", submitted, 2021.

