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Inverse Problems

y = (y1, . . . , yM ) 2 RM : Measurement vector ym ⇡ ⌫m(f), m = 1, . . . ,M : Forward model

• Finitely many noisy observations

f : Rd ! R: Signal of interest f 2 F(Rd): Infinite-dimensional search space

• Continuous-domain problems

Blind men and an elephant

Recovering an unknown signal from a collection of observations

The mathematical setting of interest

⌫ = (⌫m) : F(Rd) ! RM : Continuous vector-valued linear functional

• Linear forward model
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Supervised Learning
Without Overfitting!

Source: en.wikipedia.org/wiki/Overfitting

Training data: {(xm, ym)}Mm=1 ✓ X ⇥ Y

Goal: Find f : X ! Y such that f(xm) ⇡ ym for m = 1, . . . ,M

Nonparametric regression

• X = Rd and Y = R

• f 2 F(Rd)

⌫m = �xm : F(Rd) ! R : f 7! f(xm): Sampling functional

Supervised learning as a special linear inverse problem

• ⌫ : f 7! (f(x1), . . . , f(xM )) 2 RM
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Variational Formulation of Inverse Problems

H

min
f2F(Rd)

MX

m=1

E(⌫m(f), ym)

| {z }
Data Fidelity

+ �R(f)

| {z }
Regularization

E : R⇥ R ! R�0: Convex loss function

• Penalizes the data discrepancy

• Related to the noise model

• e.g. Quadratic loss E(y, z) = (y � z)2

R : F(Rd) ! R�0: Regularization functional

• Enforces prior knowledge on the reconstructed signal

• Related to the signal model

• e.g. Tikhonov, total-variation (TV)

F(Rd): Banach space?F(Rd): Hilbert space
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Outline of the Thesis

Chapter 2: Optimization Theory 

Sums of Banach spaces

Chapter 3: Supervised Learning 

Regression with sparsity prior

Chapter 4: Inverse Problems 

Multi-component models

Chapter 1: Spline Theory 

Multi-splines

Chapter 5: Stochastic Processes 

Sparsity of Lévy processes
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Part I: Optimization over Banach Spaces

M. Unser, S. Aziznejad, "Convex optimization in sums of Banach spaces," Applied and Computational Harmonic Analysis, 2022.

H

V = argmin
f2F

k⌫(f)� yk22 + �R(f)

Characterizing the solution set V in two different scenarios

Relevant publication

General representer theorem [Unser’21]:

• Full characterization when F = X 0 and R(f) = kfkX 0

• Ext(V): Linear combination of at most M extreme points of BX 0

1. Direct-product structure: X = X1 ⇥ · · ·⇥ XN , F = X 0 and R(f) = kfkX 0

2. Minimization of seminorms: F = U 0 �N 0 and R(f) = kProjU 0(f)kU 0
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Optimization over Direct-Product Spaces

Theorem [Unser-A.’22, simplified]

• (Xn, k · kXn), n = 1, . . . , N : Banach spaces

• (X , k · kX ) = (X1 ⇥ · · ·⇥ XN )1: Direct-product search space

k(f1, . . . , fN )kX = max(kf1kX1 , . . . , kfNkXN )

• ⌫ = (⌫m) : X 0 ! RM : Weak*-continuous

Then, the solution set

V = argmin
f2X 0

k⌫(f)� yk22 + �kfkX 0

is nonempty, convex and weak*-compact. Moreover

1. Ext(V|X 0
n
): linear combination of Kn extreme points of BX 0

n

2.
PN

n=1 Kn  M .

Sketch of proof

1. Topological structure of the search space

• X 0 = X 0
1 ⇥ · · ·⇥ X 0

N

• k(fn)kX 0 =
PN

n=1 kfnkX 0
n

2. Topological structure of V

• General representer theorem [Unser’21]

3. e = (en) 2 Ext(BX 0) if and only if

• en 2 Ext(BX 0
n
) for n = 1, . . . , N

•
�
ke1kX 0

1
, . . . , keNkX 0

N

�
2 Ext(B1)

4. Extreme points of the unit `1 ball in RN

• ±en = (0, . . . ,±1, . . . , 0) ✓ RN
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Part I: Optimization over Banach Spaces

M. Unser, S. Aziznejad, "Convex optimization in sums of Banach spaces," Applied and Computational Harmonic Analysis, 2022.

H

V = argmin
f2F

k⌫(f)� yk22 + �R(f)

Characterizing the solution set V in two different scenarios

Relevant publication

General representer theorem [Unser’21]:

• Full characterization when F = X 0 and R(f) = kfkX 0

• Ext(V): Linear combination of at most M extreme points of BX 0

1. Direct-product structure: X = X1 ⇥ · · ·⇥ XN , F = X 0 and R(f) = kfkX 0

2. Minimization of seminorms: F = U 0 �N 0 and R(f) = kProjU 0(f)kU 0



9

Minimization of Seminorms

Theorem [Unser-A.’22]

• X = U �N with dim(N ) = N0 < +1

• ⌫ = (⌫m) : X 0 ! RM : invertible over N 0

Then, the solution set

V = argmin
f2X 0

k⌫(f)� yk22 + �kProjU 0(f)kU 0

is nonempty, convex and weak*-compact.
Moreover for any f 2 Ext(V), we have that

f =
K0X

k=1

ckek + p,

where K0  (M �N0), ek 2 Ext(BU 0) and p 2 N 0.

Sketch of proof

1. Existence of a solution

• The cost functional is coercive

• Weak*-lower semicontinuity

• The generalized Weierstrass theorem

2. Rewriting V as a constrained problem

• Strict convexity of k ·�yk22

3. Removing N0 constraints

• Precise specification of p 2 N 0

4. Reformulating the problem over U 0

5. Form of the extreme points

• The general representer theorem over U 0
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Part II: Supervised Learning with Sparsity Prior

S. Aziznejad, M. Unser,  "Multikernel regression with sparsity constraint," SIAM Journal on Mathematics of Data Science, 2021.

S. Aziznejad, T. Debarre, M. Unser,  "Sparsest univariate learning models under Lipschitz constraint," IEEE Open Journal of Signal Processing, 2022.

S. Aziznejad, H. Gupta, J. Campos, M. Unser,  "Deep neural networks with trainable activations and controlled Lipschitz constant," IEEE Transactions on Signal Processing, 2020.

P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser,  "Learning activation functions in deep (spline) neural networks," IEEE Open Journal of Signal Processing, 2020.

S. Aziznejad, M. Unser,  "Duality mapping for Schatten matrix norms," Numerical Functional Analysis and Optimization, 2021.

S. Aziznejad, J. Campos, M. Unser,  "Measuring complexity of learning schemes using Hessian-Schatten total variation," ArXiv, 2021.

J. Campos, S. Aziznejad, M. Unser,  "Learning of continuous and piecewise-linear functions with Hessian total-variation regularization," IEEE Open Journal of Signal Processing, 2022.

Deriving regression schemes in the nonparametric setting

Relevant publications

1. Multi-kernel regression with sparse and adaptive kernels

2. Learning univariate functions under joint sparsity and Lipschitz constraints

3. Learning free-form activation functions of deep neural networks

4. Learning multivariate continuous and piecewise linear functions
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Part II: Supervised Learning with Sparsity Prior
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Part II: Supervised Learning with Sparsity Prior

S. Aziznejad, M. Unser,  "Multikernel regression with sparsity constraint," SIAM Journal on Mathematics of Data Science, 2021.

Deriving regression schemes in the nonparametric setting

Relevant publications

1. Multi-kernel regression with sparse and adaptive kernels
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Banach-Admissible Kernels

• Banach structure: kfkML = kL{f}kM

• Banach kernel: k = L�1{�} 2 ML(Rd)

• Extreme points of BML : ±k(·� z0) for all z0 2 Rd

• L1(Rd) ✓ M(Rd) with kfkL1 = kfkM for any f 2 L1(Rd).

• For any a = (an) 2 `1(Z):

wa =
P

n2Z an�xn 2 M(Rd), kwakM = kak`1

Johann Radon
 (1887 – 1956)

Recall: M(Rd) is the space of finite Radon measures (Duval-Peyré '15)

(Chizat-Bach '20)

L: Linear shift-invariant (LSI) isomorphisms onto M(Rd)

Search space ML(Rd) = L�1
�
M(Rd)

�

(Unser et al. '17)
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Banach-Admissible Kernels

Theorem [A.-Unser ’21]

1. The LSI operator L is an isomorphism over S 0(Rd) if and only if the
Fourier transform of its Banach kernel bk(!) is a smooth, nonvanishing,
slowly growing, and heavy-tailed function of !.

2. Pointwise evaluation is weak*-continuous over ML(Rd), if and only if
k 2 C0(Rd).
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Proof

S 0(Rd)
L

L�1
ML(Rd) M(Rd)

M0(Rd)M0
L(Rd) CL(Rd) C0(Rd)

L⇤

L�1⇤

dual dual

S 0(Rd)
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Sparse Multikernel Regression

Sketch of proof

1. Search space: X 0 =
QN

n=1 MLn(Rd)

2. Measurements: ⌫m(f1, . . . , fN ) =
PN

n=1 fn(xm)

3. The representer theorem for X 0

Practical outcomes

1. K  M : The upper-bound is independent of N

2. Adaptive expansion: both in shapes and locations

3. Sparse expansion: `1 penalty on kernel coefficients

4. In low dimensions: Grid-based methods + FISTA

(Lanckriet et al. '04) (Bach et al. '05)Learning with multiple kernels

• k1, . . . , kN : prescribed positive-definite kernels • Learn a positive-definite kernel kµ =
PN

n=1 µnkn

Theorem [A.-Unser ’21] There exists f⇤ solution of

min
fn2MLn

(Rd),

f=
PN

n=1 fn

MX

m=1

|f(xm)� ym|2 + �
NX

n=1

kLn{fn}kM,

with the expansion

f⇤ =
NX

n=1

MnX

l=1

a⇤n,lkn(·, z⇤
n,l),

where K =
PN

n=1 Mn  M . Moreover,

a⇤ = (a⇤n,l) 2 argmin
a2RK

MX

m=1

kGa� yk22 + �kak`1

for some matrix G 2 RM⇥K that depends on the kernel locations z⇤
n,l.
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Numerical Examples
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Part II: Supervised Learning with Sparsity Prior

S. Aziznejad, T. Debarre, M. Unser,  "Sparsest univariate learning models under Lipschitz constraint," IEEE Open Journal of Signal Processing, 2022.

S. Aziznejad, H. Gupta, J. Campos, M. Unser,  "Deep neural networks with trainable activations and controlled Lipschitz constant," IEEE Transactions 

on Signal Processing, 2020.

P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser,  "Learning activation functions in deep (spline) neural networks," IEEE Open Journal of Signal 

Processing, 2020.

Deriving regression schemes in the nonparametric setting

Relevant publications

2. Learning univariate functions under joint sparsity and Lipschitz constraints

3. Learning free-form activation functions of deep neural networks
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Feed-Forward Deep Neural Networks

Composition of “simple” vector-valued mappings

Input-output relation: fdeep : RN0 ! RNL : x 7! fL � · · · � f1(x).

Wl =
h
w1,l w2,l · · · wNl,l

iT

(x1, . . . , xNl) 7! (�1,l(x1),�2,l(x2), . . . ,�Nl,l(xNl))�l : RNl ! RNl

lth layer f l(x) =
⇣
�1,l(wT

1,lx),�2,l(wT
2,lx), . . . ,�Nl,l(w

T
Nl,l

x)
⌘

• Linear layer

• Pointwise nonlinearity

• Alternative representation fl = �l �Wl

Fixed-shape nonlinearities �n,l(x) = �(x� bn,l)
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Activation Functions

(Glorot et al. '11) (Maas et al. '13)

Fixed activation functions: ReLU, LReLU

ReLU(x) =

8
<

:
x, x � 0

0, x < 0
LReLUa(x) =

8
<

:
x, x � 0

ax, x < 0

(He et al. '15) (Agostinelli et al. '15)

• Linear spline

• `2 regularization

• < 10 knots

Parametric activation functions

PReLU: Learn the negative slope Adaptive Piecewise Linear
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CPWL Structure of ReLU Neural Networks

(Poggio et al. '15)ReLU DNNs: Hierarchical splines

P1 P2

P3 P4

Continuous and Piecewise-Linear (CPWL) Functions

• f 2 C(Rd)

• 9(Pn)Nn=1 : Rd = P1 t · · · t PN and f |Pn is affine for n = 1, . . . , N .

(Arora et al. '18)Converse: CPWL functions can be represented by ReLU DNNs.

) linear spline DNNs are CPWL.{• In 1D: CPWL () Linear spline

• Linear combination of CPWL functions ) CPWL

• Composition of two CPWL ) CPWL

CPWL structure of ReLU DNNs
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Free-Form Activation Functions

Deep Splines!

Principled design:

• Preserves CPWL structure of DNNs

• Promotes sparse activation functions

(Antun et al. '20)• Controls the global Lipschitz regularity of the network

• Efficient implementation that makes it scalable in time and memory

Deep splines: a functional framework for learning activation functions

Open-source software: github.com/joaquimcampos/DeepSplines
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Part II: Supervised Learning with Sparsity Prior

S. Aziznejad, T. Debarre, M. Unser,  "Sparsest univariate learning models under Lipschitz constraint," IEEE Open Journal of 

Signal Processing, 2022.

Deriving regression schemes in the nonparametric setting

Relevant publications

2. Learning univariate functions under joint sparsity and Lipschitz constraints
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1D Regression with Sparsity

VTV(2) contains linear spline solutions with at most (M � 2) knots.

(Unser et al. '17)(Gupta et al. '18)

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

Efficient method for finding the sparsest linear spline solution

(Debarre et al. '22)

Sparsity promoting!Simple observation:

f(x) = ax+ b+
KX

k=1

akReLU(·� xk) ) D2{f} =
KX

k=1

ak�(·� xk) ) TV(2)(f) = kD2{f}kM =
KX

k=1

|ak|

VTV(2) = argmin
f2BV(2)(R)

MX

m=1

|f(xm)� ym|2 + �TV(2)(f)
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1D Regression: Lipschitz Regularization

Theorem [A. et al. ’22, simplified]
The solution set

VLip = argmin
f2Lip(R)

MX

m=1

|f(xm)� ym|2 + �L(f)

is nonempty, convex, and weak*-compact. Moreover, there
exists a unique vector z = (zm) 2 RM such that

VLip =

⇢
f 2 Lip(R) : L(f) = max

m 6=n

����
zm � zn
xm � xn

���� , 8m : f(xm) = zm

�

Lipschitz constant: L(f) = supx1 6=x2

|f(x1)�f(x2)|
|x1�x2| Lip(R) = {f : R ! R : L(f) < +1}

Corollary: The solution set VLip contains linear splines.

Proof. Take the canonical linear spline interpolator of {(xm, zm)}Mm=1.

Sketch of proof

1. Topological structure of VLip

• Finding the predual of Lip(R)

• Weak*-continuity of sampling

• Representer theorem for seminorms

2. Existence of z

• Strict convexity of k ·�yk22

3. fcano 2 VLip



26

How to find the sparsest solution? 

0 0.2 0.4 0.6 0.8 1
-1

0
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2

3

4

Not that sparse!
(Debarre et al. '20)

Two-stage algorithm: assume that x1 < . . . < xM

• Find the sparsest linear spline interpolant of (x1, z⇤1), . . . , (xM , z⇤M ).

• Using proximal methods (e.g. ADMM), solve the minimization

argminz2RM

MX

m=1

(ym � zm)2 + � max
2mM

����
zm � zm�1

xm � xm�1

����
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1D Regression: Sparse + Lipschitz

(Bohra et al. '21)(Arjovsky et al. '17)Explicit control of Lipschitz constant

Vhyb = argmin
f2BV(2)(R)

MX

m=1

|f(xm)� ym|2 + �TV(2)(f), s.t. L(f)  L̄

(Parhi-Nowak '21)(Savarese et al. '19)

Theorem [A. et al. ’21]

• Vhyb: nonempty, convex and weak*-compact subset of BV(2)(R)

• Extreme points of Vhyb: linear splines with K  M knots.

• Let us denote by ✓, the parameter vector of the shallow ReLU network f✓ :
R ! R with two layers and skip connections. Consider the minimization
problem

VNN = argmin
✓

MX

m=1

|f✓(xm)� ym|2 + �R(✓), s.t. L(f✓)  L,

where R(✓) denotes weight decay regularization. Then the mapping ✓ 7!
f✓ : VNN ! Vhyb \ CPWL is a bijection.

Sketch of proof

1. Topological structure of Vhyb

• Weak*-closedness of the Lipschitz ball

• Representer theorem for seminorms

2. Extreme points of Vhyb

• Vhyb = VTV(2) (informal)

3. Bijection with VNN

• Homogeneity of ReLU: (2x)+ = 2(x)+

• R(✓⇤) = TV(2)(f✓⇤)
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1D Regression: Sparse + Lipschitz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.15

-0.1

-0.05

0

Removing outliers!
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Part II: Supervised Learning with Sparsity Prior

S. Aziznejad, H. Gupta, J. Campos, M. Unser,  "Deep neural networks with trainable activations and controlled Lipschitz 

constant," IEEE Transactions on Signal Processing, 2020.

P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser,  "Learning activation functions in deep (spline) neural networks," 

IEEE Open Journal of Signal Processing, 2020.

Deriving regression schemes in the nonparametric setting

Relevant publications

3. Learning free-form activation functions of deep neural networks
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Deep Splines Representer Theorem
� = (�n) 2 BV(2)(R)N ) k�kBV(2) =

PN
n=1 k�nkBV(2)

Theorem [A. et al. ’20]
Any feed-forward fully-connected deep neural network with second-order bounded
activation functions is Lipschitz continuous. Moreover, the Lipschitz constant of
fdeep :

�
RN0 , k · k2

�
!
�
RNL , k · k2

�
is upper-bounded by

L(fdeep) 
 

LY

l=1

kWlkF

!
.

 
LY

l=1

k�lkBV(2)

!

Sketch of proof

1. Lipschitz constant of an activation function < TV2

2. For a layer: Hölder’s ineqaulity

3. For the network: Product bound

Sketch of proof

1. Existence: Lipschitz-continuity of the activations

2. Form of the activation functions:

• Fix an arbitrary solution

• Define a 1D problem per activation function

• Show the equivalence to the training of the
neural network.

3. Optimality condition:

• Homogeneity of TV2-regularization

• AM-GM type inequality

Theorem [A. et al. ’20]
There exists an optimal configuration that minimizes the cost functional

J (fdeep) =
MX

m=1

E
�
ym, fdeep(xm)

�
+

LX

l=1

µlkWlk2F +
LX

l=1

�lk�lkBV(2)

whose activation functions are linear splines with at most M knots.
Moreover, any local minima of the above problem satisfies

�lk�lkBV(2) = 2µl+1kWl+1k2F , l = 1, . . . , L� 1.

(Unser'19)

L(f)  kfkBV(2) = TV(2)(f) + |f(0)|+ |f(1)|
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Example
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Part II: Supervised Learning with Sparsity Prior

S. Aziznejad, M. Unser,  "Duality mapping for Schatten matrix norms," Numerical Functional Analysis and Optimization, 2021.

S. Aziznejad, J. Campos, M. Unser,  "Measuring complexity of learning schemes using Hessian-Schatten total variation," 

ArXiv, 2021.

J. Campos, S. Aziznejad, M. Unser,  "Learning of continuous and piecewise-linear functions with Hessian total-variation 

regularization," IEEE Open Journal of Signal Processing, 2022.

Deriving regression schemes in the nonparametric setting

Relevant publications

4. Learning multivariate continuous and piecewise linear functions
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CPWL Functions Revisited

H
min

f2F(Rd)

MX

m=1

|f(xm)� ym|2 + �R(f)

{Hessian-SchattenTotal Variation (HTV)

Recall: ReLU DNNs = Deep splines = CPWL family

Goal: Learning CPWL mappings directly from the data

• Regularization: Sparsity-promoting, CPWL-promoting

• Hessian of CPWL functions has Hausdorff dimension = (d� 1)

• Schatten norms promote low-rank matrices

• Total-variation promotes sparsity in the space of measures

Not suitable for CPWL functions!Informal definition HTVp(f) =

Z

Rd

kH{f}(x)kSpdx

• Search space: f 2 F(Rd) , R(f) < +1

In d=1: TV-2!
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Hessian-Schatten Total Variation

Theorem [A. et al. ’21]

1. If f : Rd ! R is twice differentiable, then

HTVp(f) =

Z

Rd

kH{f}(x)kSpdx.

2. Let f be a CPWL function with linear regions P1, . . . , PN so that

rf
��
Pn

= an 2 Rd
for n = 1, . . . , N . Then

HTVp(f) =

X

m<n

kan � amk2Hd�1
(Pn \ Pm),

where H
d�1

denotes the (d� 1)-dimensional Hausdorff measure.

Definition [A. et al. ’21]
Let p 2 [1,+1] and q = p/(p � 1). The Hessian-Schatten total-variation (HTV) of

any f : Rd ! R

HTVp(f) = sup
�
hH{f},Fi : F = [fi,j ], fi,j 2 C0(Rd

), kF(x)kSq  18x 2 Rd
 
.

Sketch of proof
Item 1:

(I) LHS  RHS

• Hölder’s inequality

(II) 8✏ > 0 : LHS � RHS � ✏

• Lusin’s theorem

• Duality mapping of Schatten norms [A.-Unser’21]

Item 2:

(I) Assuming general conditions

• invariance properties of the HTV

(II) Explicit computation of the Hessian measure

(III) Rank-1 structure of the Hessian
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Example: HTV As a Complexity Measure
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HTV=0.1 HTV=0.28 HTV=0.51

In dimension d = 1: HTVp(f) = TV
(2)
(f)
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Example: HTV As a Complexity Measure
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Part III: Multicomponent Inverse Problems

T. Debarre, S. Aziznejad, M. Unser,  "Hybrid-spline dictionaries for continuous-domain inverse problems," IEEE Transactions 

on Signal Processing, 2019.

T. Debarre, S. Aziznejad, M. Unser,  "Continuous-domain formulation of inverse problems for composite sparse-plus-smooth 

signals," IEEE Open Journal of Signal Processing, 2021.

I. Lloréns Jover, T. Debarre, S. Aziznejad, M. Unser,  "Coupled splines for sparse curve fitting," ArXiv, 2021.

Multicomponent model: s = s1 + s2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Ground truth
Simplex (cos)

1. Both components are sparse, albeit in different domains

2. One component is sparse, the other one is smooth

3. Application: 2D curve fitting

Relevant publications



38

Part III: Multicomponent Inverse Problems

I. Lloréns Jover, T. Debarre, S. Aziznejad, M. Unser,  "Coupled splines for sparse curve fitting," ArXiv, 2021.

Multicomponent model: s = s1 + s2
Measures

Reconstructed curve

Linear knot (x or y)

Cubic knot (x or y)

Lin and cub knot (x or y)

3. Application: 2D curve fitting

Relevant publications
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2D Curve Fitting

• L = DN , N � 2 • R: A novel rotation-invariant mixed-norm

Goal: Find r(t) = (x(t), y(t)) that best fits p[m] = (px[m], py[m])

Our formulation: curve fitting as an inverse problem

Regularization functional: R(L{r})

Proposition [Lloréns Jover et al. ’21]
The TV � `p mixed-norm is rotation invariant, if and only if p = 2.

Definition [Lloréns Jover et al. ’21]
Let p 2 [1,+1] and q = p/(p � 1). The TV � `p mixed-norm of w = (w1, w2) 2
S 0(T)2 is defined as

kwkTV�`p = sup
�
hw,'i : ' 2 S(T)2, k'(x)kq  18x 2 T

 
.

R = k · kTV�`2



40

2D Curve Fitting
Theorem [Lloréns Jover et al. ’21]

1. For any curve f = (f1, f2) with absolutely integrable components fi 2
L1(TM ), i = 1, 2, we have that

k[f1 f2]kTV�`p =

Z M

0
kf(t)kpdt.

2. Let w = (w1, w2) be a vector-valued distribution of the form
w =

PK
k=1 a[k]XM (· � tk) with a[k] 2 R2, k = 0, . . . ,K � 1. Then, we

have that

k[w1 w2]kTV�`p =
K�1X

k=0

ka[k]kp.

Theorem [Lloréns Jover et al. ’21]
There is a hybrid-spline solution with K  2M + 2 knots for the minimization

min
ri2XLi (TM )

r1(0)=0

M�1X

m=0

kr1(t)|t=m + r2(t)|t=m � p[m]k22+�1 kL1{r1}kTV�`2
+�2 kL2{r2}kTV�`2

.

Sketch of proof
Item 1 and 2:

(I) LHS  RHS

• Hölder’s inequality

(II) 8✏ > 0 : LHS � RHS � ✏

• Lusin’s theorem

• Duality mapping of `p norms

Sketch of proof

1. Existence

• Direct-product

• seminorm minimization

2. Form of the solution

• Extreme points of the RI-TV ball
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Example
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Example
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Conclusion

[O] Convex optimization problems over Banach spaces

O1. Direct-product search spaces

O2. Seminorm regularization

[L] Supervised learning with sparsity prior

L1. Sparse multikernel regression

L2. Univariate learning with sparsity and Lipschitz constraint

L3. Learning activation functions of deep neural networks

L4. Learning multivariate CPWL functions with HTV regularization

[I] Multicomponent inverse problems

O1 O2

L1 L2

L3

L4

I
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Many thanks! 


